

Fused Silica Glass

N Series

Tosoh N and NP materials are manufactured by fusing a high-purity silica powder using Tosoh's proprietary oxy-hydrogen flame fusion process. Thanks to its high purity, low aluminum content, and extremely low level of bubbles and inclusions, N has become the reference material for a broad range of applications, such as semiconductor manufacturing, metrology, optics, chemical processing, UV and hightemperature windows.

In particular, N is an enabling material for stringent plasma etch processes used in leading-edge semiconductor manufacturing.

NP is an enhanced version of N material, with further reduced alkali content for use in processes that require extreme contamination control.

Brades	Features
Ν	Semiconductor standard grade
NP	Semiconductor high-purity grade

Available in up to 1,200mm square and 580 mm round ingots, N and NP materials are 450mm wafer ready.

OP Series

Tosoh OP-1 and OP-3 materials are manufactured by fusing a high-purity silica powder using Tosoh's proprietary oxy-hydrogen flame fusion process and a method of generating uniformly dispersed small bubbles inside the material. Thanks to its high purity and excellent infrared blocking properties, OP-1 has become the material of choice as a heat-insulating material for semiconductor and solar manufacturing equipment, such as epi and RTP chambers, and oxidation, diffusion, and CVD batch furnaces.

OP-3 is an enhanced version of OP-1 material, with further reduced alkali content for use in processes that require extreme contamination control.

Grades	Features
0P-1	Semiconductor standard grade
OP-3	Semiconductor high-purity grade
OP-3HD	High-density OP-3 grade

OP-3HD is a high-density version of OP-3, with a smaller diameter bubble size distribution that provides enhanced sealing properties and lifetime for advanced batch furnace processes.

Available in up to 1,000mm round and square ingots, OP-1, OP-3, and OP-3HD materials are 450mm wafer ready.

S Series

Tosoh S material is manufactured by fusing a synthetic super high-purity silica powder using Tosoh's proprietary oxy-hydrogen flame fusion process. Tosoh SD material is fused from the same synthetic super high-purity powder using a plasma fusion process for reduced OH content. Thanks to their extreme purity and complete lack of inclusions, S and SD materials are the next generation of materials for semiconductor manufacturing.

Available in up to 1,200mm square ingots, S and SD materials are 450mm wafer ready.

Available size							
Grades	Ingots	Large	tubes	Narrow	<i>i</i> tubes	Rods	
Gidues	Diameter/Side (mm)	Diameter (mm)	Thickness(mm)	Diameter(mm)	Thickness(mm)	Diameter(mm)	
N Series	□575~□1,200 ○520~○580	~480	~6	~35	1~2	~35	
OP Series	□550~□1,000 ○250~○1,000	NA	NA	NA	NA	NA	
S Series	~[],200	~480	~6	~35	1~2	~35	

*For sizes other than those listed above, please inquire.

Typical Impurity Level

									Units: ppm
Grades	Al	Са	Cu	Fe	Na	К	Li	Mg	OH
Ν	9.1	0.9	ND	0.31	1.01	0.12	0.07	0.11	230
NP	8.1	0.6	ND	0.12	0.14	0.05	0.05	0.04	270
0P-1	9.1	1.0	ND	0.50	0.80	0.39	0.13	0.11	160
0P-3, 3HD	8.3	0.7	ND	0.21	0.15	0.06	0.13	0.05	160
S	1.6	0.0	ND	0.05	0.18	ND	ND	ND	350
SD	0.2	0.0	ND	0.06	0.22	ND	ND	ND	50

 2^{ND} (Not Detectable): ≤ 0.01 ppm

Bubble and Inclusion levels

				Units: Count/ft ³	
Grades		Bubble dia	meter(mm)		
Ulaues	<Φ0.3	Ф0.3~0.5	ФО.5~1	Φ1.0<	
N, NP	n.sp.	3	2	0	
S, SD	n.sp.	1	0	0	
Grades	Inclusion diameter (mm)				
Ulaues	<Φ0.3	Ф0.3~0.5	ФО.5~1	Φ1.0<	
N, NP	n.sp.	2	1	1	
S, SD	n.sp.	1	0	0	

*n.sp. : not specified

Tosoh N, NP, and S materials are fused in a Tosoh proprietary oxyhydrogen flame fusion process that guarantees a significantly better level of bubbles and inclusions compared with traditional electrically fused quartz.

Spectral Transmission of N & S series

Physical Properties

	Item		Unit	N.NP	S	SD	0P-1,3	OP-3HD
	Density		g/cm ³	2.2	2.2	2.2	2.02	2.1
lies	Young's modulus		GPa	74	74	74	-	-
	Shear modulus		GPa	31	31	31	—	-
Do la	Poisson's ratio			0.17	0.17	0.17	-	-
alp	Bending strength *1		MPa	65~95	65~95	65~95	42~67	57~87
Mechanical properties	Compressive strength		MPa	1,130	1,130	1,130	-	-
cha	Tensile strength *1		MPa	50	50	50	-	-
Vec	Torsion strength		MPa	29	29	29	-	-
~	Vickers hardness		MPa	8,900	8,900	8,900	8,900	8,900
	Strain point(η =10 ^{14.5})		Ĉ	1,080	1,070	1,100	1,070	1,070
lies	Annealing point(η =10 ¹³)		C	1,180	1,170	1,190	1,170	1,170
Dert	Softening point(η =10 ^{7.6})*2	2	Ĉ	1,720	1,720	1,720	1,720	1,720
Thermal properties	Coefficient of expansion	30~600℃	x10 ⁻⁷ /℃	5.7	5.7	5.0	6.4	6.4
a	Specific heat	at 20°C	J/kg·K	749	749	749	749	749
Ê	Thermal diffusivity	at 20℃	x10 ⁻⁷ m ² /s	8.3	8.3	8.3	8.4	8.5
The	Thermal conductivity	at 20℃	W/mK	1.38	1.38	1.38	1.24	1.33
	Viscosity(log <i>n</i>)	at1200℃	Poise	12.7	12.5	13.0	12.6	12.6
ġ	Dielectric constant	500MHz		3.9	3.9	3.9	3.7	3.8
Prop.	Dielectric loss factor	500MHz	x10 ⁻³	<1	<1	<1	<1	<1
	Resistivity		Ω	3x10 ¹⁵	4x10 ¹⁵	1x10 ¹⁶	-	-
Electric	Volume resistivity		Ω·cm	5x10 ¹⁶	7x10 ¹⁶	2x10 ¹⁷	_	-
Ē	Dielectric breakdown	50Hz, 20℃	V/mm	32,000	32,000	32,000	25,500	-

*1 Bending and tensile strengths are affected by surface conditions.

*2 Estimate from extrapolation

NOTE:Unless otherwise stated, all values prepresent typical data at 25°C

Microscopic image of bubbles and inclusions

S, NP, N

Electrically fused quartz

Chemical Properties

Etching rate of fused silica glass by selected acids & alkali

			Unit: µm/h		
	Solution : HF 1	0wt.%、25°C *1	Solution : KOH 10wt.%, 25°C *2		
Grades	F.p. surface ^{*3}	Ground surface	F.p. surface ^{*3}	Ground surface	
N	0.07	0.08	0.001	0.003	
S	0.06	0.08	0.001	0.005	
OP-3	0.07	0.1	0.002	0.005	

Etching rate is affected by solution concentration, temperature, materials, and surface condition.

- *1 Etching time : 3 hours
- *2 Etching time : 72 hours
- *3 F.p. = Fire polished

Chemical reactivity towards other materials

	Metals and nonmetals	Gases		
Al, Ag	Rapid reaction at 700-800℃	CO, SO ₂	No reaction	
Au, Ag, Pt	No reaction	N ₂ , O ₂	No reaction	
Zn, Sn, Pb	No reaction	Cl ₂	No reaction	
Si	Slight reaction when fused	F2	No reaction with dried gases under 300 $^\circ\!\!\!\mathrm{C}$	
Ge	No reaction at 900℃	H₂	No reaction	
Mo, W	No reaction	HCI	No reaction	
Oxides			Salts	
Al ₂ O ₃	Gradual reaction over 900°C	BaCl₂	Reaction when fused	
CaO	Reaction over 900°C	BaSO ₄	Reaction over 700°C	
CuO	Reaction over 800°C	CaCl ₂	Slight reaction when fused at 800°C	
Fe ₂ O ₃	Reaction over 900°C	KCI	Acceleration of devitrification at high temp.	
PbO	Intense reaction with fusion	KF	Intense reaction when fused	
MgO	Slight reaction at 900°C	NaCl	Reaction visually recognized over 800°C	
ZnO	Reaction over 420°C	Na ₂ SO ₄	No reaction	

Devitrification

When silica glass is exposed to high temperatures, the pure SiO_2 structure changes from a glass state (amorphous) to a stable crystalline state called cristobalite. This structural change is known as devitrification and generally occurs at temperatures over 1,150°C for clean clear fused quartz. Devitrification may also occur at temperatures below 1,000°C in the presence of impurities such as metal. The relation between the devitrification rate of clear fused quartz and temperature in various atmospheres is indicated below.

Gas composition	Temp.(°C)	Time(h)	Degree of devitrification	Devitrification thickness(μ m)
Air	1,300	72	Surface completely devitrified	250
Dried oxygen	1,300	72	Devitrification of 50% of the surface	100~150
Industrial nitrogen	1,300	72	Surface devitrified	_
Nitrogen (O_2 and H_2O removed)	1,300	72	No devitrification	-
Hydrogen (O ₂ and H ₂ O removed)	1,300	72	No devitrification	_

Handling Precautions

Care must be taken to avoid direct hand contact with silica glass. The skin's natural salts contain alkali such as sodium, potassium, and other impurities that accelerate devitrification. All sources of metal contaminants should be avoided.

As a further precaution, fused silica should be washed in pure or distilled water, then either air dried in a clean area or wiped dry with an alcohol-soaked clean cloth. For more rigorous cleaning, a very thin surface layer of the glass can be removed by etching, prior to water washing, in a 5% - 10% hydrofluoric acid solution.

Usage Precautions

- * Always clean silica glass prior to use.
- * Dry product completely before using at high temperature.
- * Pay attention to devitrification due to atmospheric exposure.
- * Please refer to the thermal properties for your application. Fused silica can resist sudden heating and quenching, but it does have its limits.
- * Always consider fused silica's very low thermal expansion when the glass is used with other materials to avoid failure due to the differences in thermal expansion.
- * Take caution during prolonged usage at temperatures approaching the annealing point.
- * Be aware that slow sagging may occur under high temperature.

TOSOH USA, INC.

6000 Shoreline Court, Ste 101, South San Francisco, CA 9408 TEL : +1-650-210-4361 FAX : +1-650-210-4362 E-mail : info.tusa@tosoh.com URL : http://www.tosohusa.com

TOSOH CORPORATION

Advanced Materials Division Electronic Materials Dept. 3-8-2, Shiba, Minato-ku, Tokyo 105-8623, Japan TEL: +81-3-5427-5121 FAX: +81-3-5427-5200 E-mail: sekiei@tosoh.co.jp URL: http://www.tosoh.co.jp